
TWO AUTOMATED TECHNIQUES FOR ANALYZING AND DEBUGING

 MPI-BASED PROGRAMS

Sultan Aljahdali

Computer Science Department

College of Computers and Information

Technology

Taif, Saudi Arabia

aljahdali@tu.edu.sa

Mosaid Al Sadhan

King Saud University

Riyadh, Saudi Arabia

sadhan3@gmail.com

Alaa Ismail Elnashar

Computer Science Department

College of Computers and Information

Technology

Taif, Saudi Arabia

a.ismail@tu.edu.sa

Abstract

Message Passing Interface (MPI) is the most commonly

used paradigm in writing parallel programs since it can be

employed not only within a single processing node but also

across several connected ones. Data flow analysis

concepts, techniques and tools are needed to understand

and analyze MPI-based programs to detect bugs arise in

these programs. In this paper we propose two automated

techniques to analyze and debug MPI-based programs

source codes.

1 INTRODUCTION

Three main models for programming parallel architectures

are currently used. These models are message-passing

paradigm (MPI) [25], shared memory programming

model, and Partitioned Global Address Space (PGAS)

programming model [7]. Message Passing Interface (MPI)

is the most commonly used paradigm in writing parallel

programs since it can be employed not only within a single

processing node but also across several connected ones.

MPI standard has been designed to enhance portability in

parallel applications, as well as to bridge the gap between

the performance offered by a parallel architecture and the

actual performance delivered to the application [8]. It

offers several functions such as point-to-point rendezvous-

type send/receive operations, logical process topology,

data exchange, gathering and reduction operations and

synchronization.

Shared memory programming model allows a simpler

programming of parallel applications, as the control of the

data location is not required. OpenMP [9] is the most

suitable solution used for shared memory programming, as

it allows an easy development of parallel applications

through compiler directives. Hybrid systems, with both

shared/distributed memory, such as multi-core clusters,

can be programmed using MPI combined with OpenMP.

However, this hybrid model can make the parallelization

more difficult and the performance gains could not

compensate for the effort [7].

Partitioned Global Address Space (PGAS) programming

model combines the main features of the message passing

and the shared memory programming models. In PGAS

model, each process has its own private memory space, as

well as an associated shared memory region of the global

address space that can be accessed by other processes. It

also allows shared memory-like programming on

distributed memory systems. Moreover, as in MPI, PGAS

allows the exploitation of data locality as the shared

memory is partitioned among the processes in regions,

each one with affinity to the corresponding process.

Several implementations such as Parallel Virtual Machine

(PVM) [23] and MPICH2 [24] are now available and can

be used in writing MPI-based programs. Parallel Virtual

Machine (PVM), is a software package that permits a

heterogeneous collection of UNIX or Windows computers

hooked together by a network to be used as a single large

parallel computer. MPICH2 is a high performance and

widely portable implementation of MPI standard. It

efficiently supports different computation and

communication platforms. In this paper we focus on using

MPICH2 for Windows platforms. Most of parallel

Application programmers focus only on the constructive

part of creating a parallel algorithm for a particular

problem and how to implement it, but ignore the issues of

debugging [2]. Parallel programming adds new types of

bugs caused by the interaction of multiple communicated

parallel processes. These parallel bugs ‘Heisen bugs’ [14]

are difficult to be detected and resolved due to the

nondeterministic nature of the running parallel processes

which makes the bugs may disappear when one attempt to

detect them.

In this paper we present the implementation of two

automated techniques that assist in the analysis of MPI-

based programs and detecting of some parallel

programming bugs. The paper is organized as follows:

section 2 gives a brief idea about the related work. In

section 3, we discuss the analysis of MPI-based programs.

Section 4 presents the automated analysis technique. In

section 5, the automated debugging technique is presented.

2 RELATED WORK

Many techniques are used for locating parallel

programming bugs. The most commonly used techniques,

44978-1-880843-83-3/ISCA CAINE/November 2011

are dynamic analysis, static analysis and model-based test.

Dynamic analysis implies the necessity of launching an

application and executing different sequences of

operations to analyze the program behavior. As an

example, Intel Message Checker (IMC) [13] performs a

post-mortem analysis by collecting all information on MPI

calls in a trace file. After program execution, this trace file

is analyzed by a separate tool or compared with the results

from previous runs. The traditional serial debuggers can

also be used to debug MPI-based applications by setting

breakpoints to investigate a specific state. The Debugger

allows the programmer to single-step through his running

application to test a process against a specific fault. GNU

debugger (gdb) [21] and Data Display Debugger (ddd) [1]

can be used to debug MPI-based parallel applications.

MPI-CHECK [11], Umpire [15] and MARMOT [3]

debuggers are effective in detecting some types of

software bugs at runtime but still poor to detect semantics-

related bugs [19].

Static analysis approach handles only the source code

without its execution. This approach can be useful to

determine detailed and full coverage of the analyzed code.

In case of MPI-based programs, static analysis can detect

errors that may not appear during real program execution,

and hence it can complement dynamic analysis to discover

more bugs. It requires an intermediate source code

representation such control flow graphs CFG [17] as in

case of data flow testing. This means that extra effort has

to be done in building CFG representing MPI-based

programs MPI-CFG [6] since the ordinary CFG does not

demonstrate most of MPI constructs like inter-process

communication and synchronization edges.

Model-based testing is a testing approach in which test

cases are derived from a model that describes the system

under test. Practically, model-based test works only for

small base blocks of an application. In most cases it is very

difficult to automatically build a model on the basis of the

code; the manual creation of models is a hard and error

prone process. It also suffers from the problem of quick

extension of state space. For MPI-based programs, this

approach would require that programmers build, either

manually or automatically, a model of their applications in

a language such as MPI-SPIN [26], Zing [20] and

PPL[18].

3 ANALYSIS OF MPI-BASED PROGRAMS

MPI-based programs are coded in a special manner, in

which each process executes the same program with

unique data. All parallelism is explicit; the programmer is

responsible for identifying parallelism and implementing

parallel algorithms using MPI constructs.

3.1 MPI Programming Model

MPI is available as an open sources implementations on a

wide range of parallel platform. In MPICH2

implementation the MPI-based source program is

compiled and linked with the MPI libraries to obtain the

executable. The user issues a directive to the operating

system that places a copy of the executable program on

each processor, the number of processes is provided within

the user directive. Each processor begins execution of its

copy of executable. Each process can execute different

statements by branching within the program based on a

unique rank "process identifier". This form of MIMD

programming is frequently called Single-program

multiple-data SPMD. Each process has its own local

memory address space; there are no shared global

variables among processes. All communications are

performed through special calls to MPI message passing

routines. MPI uses objects [13] called communicators and

groups to define which collection of processes may

communicate with each other. A communicator must be

specified as an argument for most MPI routines. An MPI-

based program consists of four parts. The first one is the

MPI include file which is required for all

programs/routines which make MPI library calls. The

second part is responsible for initializing MPI

environment. Special function calls are used for initializing

and terminating the MPI environment. The function

MPI_Init initializes the MPI execution environment. This

function must be called only once in an MPI-based

program before any other MPI functions.

MPI_Comm_size, determines the number of processes in

the group associated with a communicator. Generally used

within the communicator MPI_COMM_WORLD to

determine the number of processes being used by the

application. MPI_Comm_rank, determines the rank of the

calling process within the communicator. The third part is

the body of program instructions, calculations, and

message passing calls. The last one is terminating MPI

environment by calling the function MPI_Finalize. MPI

provides several routines used to manage the inter-process

communications via send / receive operations.

3.2 Data Flow of MPI-based Programs

Figure 1 shows a pseudo code of an MPI-based program.

Running the executable of the listed code several times

using three process may yields one of two outputs, one of

them indicates that the value 4 is sent from process 1 to

process 0 and the sum value is 7, the other one indicates

that the value 14 is sent from process 2 to process 0 and

the sum value is 17. The order of these outputs is

unpredictable. This situation reflects the non-deterministic

behavior of program execution.

These results demonstrate that the affected statements are

not the only affected ones but also there are some other

statements that should be encountered, it can be noticed

that this analysis fails to detect the effect of the definition

45

of "x" on the computation of "sum" in line 6, as shown in

table 2.

Variable definitions like " sum = 3 " in line 1, are shared in

SPMD programs without a communicator, so they are

considered as global variables. On the other hand,

variables defined within each process section, like

"sum=sum + received" in line 6 can't be shared outside this

section unless an appropriate communicator is used. These

variables are considered as local variables.

 1. sum=3

 2. Initialize MPI environment.

 2. Determine the number of MPI processes

 and their identities.

 3. if myid=0 then

 4. Receive "received" from any process

 5. Receive "sender_id" from any process

 6. sum = sum + received

 7. x0 = sum

 8. endif

 9. if myid=1 then

10. x = 5

11. if x<0 then

12. x = x +1

13. else

14. x = x-1

15. end if

16. Send "x" to process 0

17. process_id = myid

18. Send "process_id" to process 0

19. endif

20. if myid = 2 then

21. x = 7

22. x = x * 2

23. Send "x" to process 0

24. process_id = myid

25. Send "process_id" to process 0

26. endif

27. Finalize MPI environment.

28. END

Figure 1. pseudo MPI –based code

Table1

Case Affected statements
definition of sum in line 1 6 sum=sum + received

definition of sum in line 6 7 x0 = sum

definition of x in line 10

11 if x<0 then

12 x = x +1

14 x = x – 1

definition of x in line 12 16 Send "x" to process 0

definition of x in line 14 16 Send "x" to process 0

definition of x in line 21 22 x = x * 2

definition of x in line 22 25 Send "x" to process 0

Table 2

Case
Statements should be

encountered
definition of x in lines 12, 14 4 Receive "received"..

 definition of x in line 22

4 AUTOMATED ANALYSIS TECHNIQUE

Static data flow analysis is a technique for gathering

information about the possible set of values calculated at

various points in a sequential program. Data flow analysis

techniques represent a program by its control flow graph,

CFG, which consists of a set of nodes and edges. Each

node represents a basic block which is a set of consecutive

statements of the program, and each edge represents the

control flow between these blocks. The goal of analysis

techniques is to identify which definitions of program

variables can affect which uses. To build CFG, the

analyzed program is divided into a set of basic blocks, the

set of edges connecting these blocks according to the flow

of control is generated. The constructed CFG is then used

by the static analyzer to identify the def-use associations

among the blocks. CFG is used to determine those parts of

a program to which a particular value assigned to a

variable might propagate. This can be done by generating

two sets,)(idcu and),(jidpu [17] for program

variables. These two sets are necessary to determine the

definitions of every variable in the program and the uses

that might be affected by these definitions. The set

)(idcu is the set of all variable definitions for which

there are def-clear paths to their c-uses at node i .

),(jidpu is the set of all variable definitions for which

there are def-clear paths to their p-uses at edge),(ji

[16]. Using information concerning the location of variable

definitions and references, together with the “basic static

reach algorithm” [10], the two sets can be determined. The

basic static reach algorithm is used to determine the sets

reach(i) and avail(i). The set reach(i) is the set of all

variable definitions that reach node i . The set avail(i) is

the set of all available variables at node i. This set is the

union of the set of global definitions at node i together

with the set of all definitions that reach this node and are

preserved through it. Using these two sets, the sets

)(idcu and),(jidpu are constructed from the formula:

)()()(iusecireachidcu −∩=

),()(),(jiusepiavailjidpu −∩=

This technique fails to demonstrate a correct analysis for

MPI-based programs. The SPMD nature needs to be

modeled correctly in the program representation to be

considered during static program analysis; this can be

achieved by using a special data structure that can

represent sequential flow, parallel flow and

synchronization in explicitly MPI-based programs.

4.1 MPI-CFG Construction Challenges

Building a CFG representing MPI-based programs (MPI-

CFG) is restricted by the following challenges:

46

1. Processes in MPI-based programs are declared by using

the ordinary conditional "IF" statement depending on

the process identifier. This will make confusion during

dividing the program into basic blocks, and also during

the process of generating edges which will badly affect

the operations of static analyzer. "IF" statements that

are used to declare processes must be treated in a

special manner rather than that is used in treating "IF"

statements used within the body of each process as

shown in figure 1, line 9 and line 11.

2. MPI-based program is executed by more than one

process, each process has its local memory address

space; there is no shared global variables among these

processes except that are defined before the

initialization of the MPI execution environment. This

requires identifying both local and global variables.

3. Def-use association among process can be achieved

only by calling inter-process communication message

passing routines (send/ receive). This implies

constructing extra edges that represent these constructs.

4.2 Implementation of MPI-CFG Construction

Now we present our technique to build the MPI-CFG. This

flow graph resembles the synchronized flow graph [5],

program execution graph [22], parallel flow graph [12],

and parallel program flow graph PPFG [4]. The technique

works as follows:

1. MPI-based program statements identification.

In this phase, each program statement is assigned a

unique number "type" to be identified from the other

statements of the program. The phase must check for the

following:

a) If the statement "Call MPI_Comm_rank(

XX,YY,ZZ) " is encountered, it is assigned its type and

the second parameter YY which indicates the variable

name that will be used to identify the parallel processes

is recorded as "special_id".

b) The assigned type of conditional "IF" statements

depends on the recorded "special_id"; if the value of

"special_id" appears in the condition, this means that

the encountered "IF" statement is used to declare a

process, otherwise, it is an ordinary conditional

statement.

The output of this phase is an intermediate

representation of the source code. It contains numbered

statements of the input program associated with their

types and the recorded "special_id".

2. Building Basic Blocks

This phase uses the output of the previous phase to

build the program basic blocks. We construct two extra

special types of basic blocks called "message block"

and "finalize block". A message block is either "receive

block" or "send block". A basic block that has at most

one communication statement at its start is said to be

"receive block". This block is constructed if the

statement call MPI_Recv() is encountered. The "send

block" has at most one communication statement at its

end. This block is constructed if the statement call

MPI_Send() is encountered. The "finalize block" is

constructed if call MPI_Finalize() statement is

encountered. During building basic blocks the program

variables, their block numbers and their status (def, c-

use, or p-use) are also recorded.

At the termination of this phase another version of the

input MPI-based program is generated. This version

contains the statement and block number for each

program statement. All the required information about

the variable names and the parameters of send/receive

constructs are also recorded.

3. Generating Edges.

This phase connects the basic blocks generated in the

previous phase with the appropriate edges. The edges

are classified into three categories, sequential, parallel,

and synchronization edges. Sequential edges indicate a

possible flow from a block to another one. This type of

edges is used to connect the basic blocks within each

process as the ordinary sequential flow edges. Parallel

edges represent the parallel control flow at both

process declaration and termination points.

Synchronization edges represent the inter-process

communication via send/receive operations.

Synchronization edges are generated by matching the

parameters of call MPI_Recv() and call MPI_Send()

recorded in the second phase. The output of this phase

is the MPI-CFG. Figure 2 shows the MPI-CFG of the

real code corresponds to the pseudo code listed in

Figure 1.

Figure 2. MPI Control flow graph

We applied the ordinary data flow analysis technique

described above on the constructed MPI-CFG with some

modifications to handle the nature of MPI-based programs.

5 Automated Debugging Technique

47

There are four possible types of anomalies that may occur

due to the inter-process communication of parallel

program processes.

The first type of anomalies occurs when a process waits

for itself.

The second type is the deadlock, which occurs if a process

is suspended waiting for a value(s) to be sent from another

one that is either not exists or waits for the first one.

The third one is the run-time non-determinacy that occurs

if one WAIT corresponds to more than one SEND. This

anomaly can be noticed only at run time. In this type of

errors the program returns different results in repeated

executions for the same input data due to the non-

deterministic nature of parallel programs.

The last type of anomalies arises if there is a send

primitive without its corresponding wait primitive.

In this section we present a new technique to detect these

anomalies. The technique accepts a program that consists

of a set of parallel processes with the synchronization

primitives as its input, and then traces the input program to

detect any inter-process communication anomalies, if any.

The steps of the technique are described below:

1. Input the given source program.

2. Isolate Wait(s) and Send(s). In this step, two files are

created; one records the wait statements and the other

records the send statements within the input program.

Each file contains, for every wait/send, the number of the

process which includes the wait/send statement, the

statement number, variable name that this process wait

for/send to another process, and the number of the other

process that will send/receive that variable.

3. Scan waits and sends files in the following manner:

a) For each wait primitive in the waits file, if the

number of the process which includes the wait

statement is the same as the number of the other

process that will send a certain variable then an

anomaly of the first class “a process waits for itself”

is detected.

b) The detection of deadlocks can be achieved by

finding those wait primitives that have no

corresponding send ones in the sends file. In this case

the line number of this statement and also the process

number is recorded.

c) Each send primitive is compared with all waits to

determine whether there is a wait/send matching or

not. If there is no matching, the line number of these

statements and also the processes numbers are

recorded.

d) Collecting the recorded information generated

from the previous steps, the anomalies report is

generated.

The flow chart of this technique is shown in figure 3.

Figure 3. Automated debugging process

6 CONCLUSION

Unlike sequential programs, data flow analysis of MPI-

based programs requires extra effort. Applying existing

concepts, techniques and tools used to analyze sequential

programs on MPI-based programs fails to report a correct

program analysis. These techniques require some

modifications to handle the SPMD nature of MPI

programs. We have implemented a technique to extend the

program CFG to represent the MPI-based programs MPI-

CFG. The static analyzer uses the constructed graph to

generate the program analysis report. We have

implemented the techniques of building message basic

blocks, constructing parallel edges, and also constructing

synchronization edges represent send/receive constructs to

produce a correct MPI-based program representation.

Also, a technique for detecting parallel bugs is proposed.

 In future, we hope to implement the construction of

synchronization edges for all MPI inter-process

communication constructs.

7 REFERENCES

[1] A. Zeller, “Debugging with DDD”, User’s Guide

and Reference Manual, Version 3.2, Copyrightc 2000

Universität Passau, Lehrstuhl für Software-Systeme,

Innstraße 33, D-94032 Passau, Germany, 2000.

[2] A. Grama, A. Gupta, G. Karypis, and V. Kumar,

“Introduction to Parallel Computing”, 2
nd

 edition,

Addison Wesley, 2003.

[3] B . Krammer, M. S. Muller and M. M. Resch, “MPI

I/O Analysis and Error Detection with MARMOT”, In

Recent Advances In Parallel Virtual Machine And

48

Message Passing,11th European PVM/MPI Users’

Group Meeting. LNCS 3241, pp 242 - 250, Springer,

2004.

[4] C. Yang and L. L. Pollock “ The Challenges in

Automated Testing of Multithreaded Programs”,the

14th International Conference on Testing Computer

Software, 1997.

[5] D. Callahan, K. Kennedy, and J. Subholk " Analysis

of event synchronization in a parallel programming

tool" 2nd ACM SIGPLAN Symposium on principles

and practice, Mach 1990.

[6] D. Shires, L. Pollock, and S. Sprenkle, “Program

flow graph construction for static analysis of mpi

programs”, In International Conference on Parallel and

Distributed Processing Techniques and pplications,

(PDPTA 99), June 1999.

[7] D. A. Mallón, G. L. Taboada, C. Teijeiro, J. Touriño,

B. B. Fraguela, A. Gómez, R. Doallo and J. C.

Mouriño " Performance Evaluation of MPI, UPC and

OpenMP on Multicore Architectures" EuroPVM/MPI

LNCS 5759, Springer Berlin Heidelberg pp. 174-184 ,

2009.

[8] D. Buntinas, G. Mercier and W. Gropp

"Implementation and Evaluation of Shared-Memory

Communication and Synchronization Operations in

MPICH2 using the Nemesis Communication

Subsystem" Parallel Computing, vol. 33, no. 9, pp.

634-644, 2007.

[9] E. Gabriel, et al. “Open MPI: Goals, Concept, and

Design of a Next Generation MPI Implementation"

Proceedings of 11th European PVM/MPI Users’ Group

Meeting, Budapest, Hungary, pp. 97–104, September

2004.

[10] F . E. Allen and J. Cocke “ A Program Data Flow

Analysis Procedure,” Communications of the ACM,

vol. 9, p.137-147, 1976.

[11] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M.

Kraeva, and Y. Zou, “ MPI-CHECK: a tool for

checking Fortran 90 MPI programs”, Concurrency and

Computation: Practice and Experience, Volume 15, pp

93-100, 2003.

[12] H . Srinivasan and Dirk Grunwald " An Efficient

Construction of Parallel Static Assignment Form for

Structured Parallel Programs", Technical report CU-

CS-564-91, University of Colorado at Boulder.,

December 1991.

[13] J. DeSouza, B. Kuhn, and B. R. de Supinski,

“Automated, scalable debugging of MPI programs

with Intel message checker”, In Proceedings of the 2nd

international workshop on Software engineering for

high performance computing system applications,

Volume 4, pp 78–82, ACM Press, NY, USA, 2005.

[14] J. Huselius,” Debugging Parallel Systems: A State

of the Art Report”, MRTC Report no. 63, September

2002.

[15] J. S. Vetter and B. R. de Supinski, “Dynamic

software testing of MPI applications with Umpire”, In

ACM/IEEE Conf. on Supercomputing (SC), 2000.

[16] M. R. Girgis and M. R. Woodward “ An Integrated

System for Program Testing Using Weak Mutation and

Data Flow Analysis”, Proceedings of Eights

International Conference on Software Engineering ,

IEEE Computer Society, p. 313-319, 1985.

[17] M. R. Girgis, A. A. Radwan, and A. I. El-Nashar,

Applying data flow analysis for detection of parallel

programs anomalies", Proceedings of the 10th

international conference on artificial intelligence

applications, Cairo, Egypt, Vol. I, pp. 80-92, Feb.

2002.

[18] Masaki Nakamura, Alaa Ismail El-Nashar, and

Kokichi Futatsugi, "An algebraic specification of

message passing programming languages", Forum on

Information Technology FIT2009, Japan, pp. 85-92,

September 2009.

[19] Nethercote and J. Seward ”Valgrind: A framework

for heavyweight dynamic binary instrumentation”, In

ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), San

Diego, California, USA, 2007.

[20] R. Palmer, S. Barrus, Y. Yang, G. Gopalakrishnan,

and R. M. Kirby, ”Gauss: A framework for verifying

scientific computing software”, In Workshop on

Software Model Checking, 2005.

[21] Stallman, R. Pesch, S. Shebs, et al, “Debugging

with GDB, The gnu Source-Level Debugger”, 9th

Edition, for GDB version 5.2.1, Boston, MA 02111-

1307 USA, ISBN 1-882114-77-9, December 2001.

[22] V. Balasundaram and K. Kennedy " Compile-time

detection of race conditions in a parallel program" 3rd

International conference on supercomputing, June

1989.

[23] V. S. Sunderam, “PVM: A framework for parallel

distributed computing” Concurrency: Practice &

Experience, vol. 2, no. 4, pp 315–339, 1990.

[24] W. Gropp, “MPICH2: A New Start for MPI

Implementations”, In Recent Advances in PVM and

MPI: 9th European PVM/MPI Users’ Group Meeting,

Linz, Austria, Oct. 2002.

[25] Y. Aoyama J. Nakano “Practical MPI

Programming”, International Technical Support

Organization, IBM Corporation SG24-5380-00, 1999.

[26] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M.

Kirby, “Distributed dynamic partial order reduction

based verification of threaded software”, In Workshop

on Model Checking Software (SPIN 2007), July 2007.

49

